发酵食品与酿酒科学团队

         发布时间:2025-05-15 23:36:10      浏览次数:

  团队负责人:

  谭海刚

  团队成员:

  黄国清、张岩、田继远、李静媛、陈勇、张晶

  团队简介:

  团队围绕发酵食品的基础和应用展开研究,重点集中在酒类、生物活性物质、发酵调味品和益生菌的开发及品质控制关键技术,团队现有教授1名,副教授4名,博士生6名。

  代表性成果:

  1.科研项目

  [1] 山东省自然科学基金面上项目,基于Pickering乳液的新型脂肪酶催化反应体系构建,2021-2023

  [2] 企业横向课题,抗体亲和力(SPR 法)分析,2023-2026

  [3] 企业横向课题,高质量红肉苹果白兰地关键技术开发,2022-2025

  [4] 企业横向课题,精油产品的开发,2024-2027

  [5] 企业横向课题,靶向递送脂质微囊粉的开发及应用研究,2024-2026

  [6] 企业横向课题,功能性酸奶发酵剂关键技术研究及产业化,2024-2026

  [7] 企业横向课题,高稳定性甜菜红色素复合物的制备及应用,2024-2026

  [8] 企业横向课题,西洋参产品的开发,2024-2027

  [9] 企业横向课题,玉米蛋白抗疲劳肽的关键制备技术及产品开发,2022-2025

  [10] 企业横向课题,食用菌酱油的开发,2021-2023

  [11] 企业横向课题,高质量樱桃白兰地关键技术开发,2020-2023

  [12] 山东省重点研发计划(医用食品专项)项目,富含LPP玉米多肽的定向制备技术研究及产品开发,2018-2020

  [13] 国家自然科学基金青年基金,原花色素提高酿酒酵母逆境耐受力关键基因的识别及其作用机制的研究,2016-2018;

  [14] 山东省自然科学基金面上项目,海藻酸钠/果胶在复凝聚微胶囊交联中的应用研究,2015-2017

  [15] 山东省良种工程,极晚熟丰产优质桃新品种选育与示范,2015-2017

  2.发明专利

  [1] 2023,ZL202310246783.0,海内氏芽孢杆菌及其在制备Levan果聚糖中的应用,发明专利

  [2] 2022,ZL202010798034.5,一株氧化葡糖酸醋杆菌及其应用,发明专利

  [3] 2022,ZL201710852042.1,一种新型的食品级高内相乳液制备方法,发明专利

  [4] 2022,ZL202110596847.0,一种提高氧化葡糖杆菌发酵食醋中总酸含量的方法,发明专利

  [5] 2021,2021103707,Method for directional preparation of LPP-rich hydrolysate from corn gluten meal by fermentation,澳大利亚革新专利

  [6] 2021,ZL202010660556.9,一种从小麦面筋蛋白中酶法制备富含IPP和VPP水解物的方法,发明专利

  [7] 2021,ZL202010660848.2,一种利用玉米蛋白粉酶法定向制备LPP三肽的方法,发明专利

  [8] 2021,ZL202010660545.0,一种利用发酵法从玉米蛋白粉中定向制备富含LPP水解物的方法,发明专利

  [9] 2018,ZL201510276685.7,一种蛋白质-壳聚糖复凝聚食品微胶囊体系及其制备方法,发明专利

  [10] 2017,ZL201510276112.4,一种稳定性高的蛋白质-壳聚糖复凝聚交联微胶囊及其制备方法,发明专利

  [11] 2016,ZL201510278384.8,一种提高辣椒红色素稳定性的微胶囊化方法,发明专利

  [12] 2015,ZL201310677821.4,一种水分散性辣椒红色素微乳液及其制备方法,发明专利

  [13] 2020,ZL201611100247.6,一种蓝莓酒的降酸处理方法,发明专利

  3.科研获奖

  [1] 2024年,中国商业联合会科学技术奖科技进步奖,功能性膳食纤维高效制备关键技术及产业化应用,一等奖

  [2] 2019年,山东省科技进步奖,鸡肉提效增值加工关键技术及应用,三等奖

  [3] 2019年,教育部高等学校科研优秀成果奖(科学技术)科学技术进步奖,细胞代谢模型理性指导的红霉素新一代关键生产技术及应用,二等奖。

  4.学术论文

  [1] Qing-Hao Li, Shi-Yu Li, Wei-Kang Yu, Jun-Xia Xiao, Guo-Qing Huang*. Comparison of the 3D printability of high internal phase Pickering emulsions stabilized by protein – Polysaccharide complexes and process optimization. Journal of Food Engineering, 2023, 353: 111548.

  [2] Kang-Yu Li, Chun-ye Gu, Li-ping Guo, Jun-Xia Xiao*, Guo-Qing Huang*. Addition of gelatin increased the spray drying performance of the Pickering emulsion stabilized by the ovalbumin – gum Arabic electrostatic complex. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023, 671: 131640.

  [3] Hui-Juan Ge, Zhi-Kai Zhang, Jun-Xia Xiao, Hai-Gang Tan, Guo-Qing Huang*. Release of Leu-Pro-Pro from corn gluten meal by fermentation with a Lactobacillus helveticus strain. Journal of the Science of Food and Agriculture, 2022, 102(3): 1095-1104.

  [4] Jingyuan Li, Kaili Zhu, Hongwei Zhao*.Transcriptome analysis reveals the protection mechanism of proanthocyanidins for Saccharomyces cerevisiae during wine fermentation. Scientific Reports, 2020, 10: 1-12.

  [5] Guo-Qing Huang, Jun-Xia Xiao, Lu-Qing Hao, Jian Yang. Microencapsulation of an angiotensin I-converting enzyme inhibitory peptide VLPVP by membrane emulsification. Food and Bioprocess Technology, 2017, 10: 2005-2012.

  [6] Guo-Qing Huang, Yan-Li Du, Jun-Xia Xiao, Guan-Yun Wang. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan – gum Arabic coacervates. Food Chemistry, 2017, 228: 236-242.

  [7] Guo-Qing Huang, Jun-Xia Xiao, Shi-Qing Wang, Hong-Wei Qiu. Rheological properties of O-carboxymethyl chitosan – gum Arabic coacervates as a function of coacervation pH. Food hydrocolloids, 2015, 43:436-441.

  [8] Jingyuan Li, Hongwei Zhao, Weidong Huang*. Yeast-induced changes in the content and structure of oligomeric proanthocyanidins during simulation of wine fermentation. Australian Journal of Grape and Wine Research. 2015, 21: 404-410.

  [9] Chenyong, Wangzejian, Chuju*. The glucose RQ-feedback control leading to improved erythromycin production by a recombinant strain Saccharopolyspora erythraea ZL1004 and its scale-up to 372-m3 fermenter. Bioprocess and Biosystems Engineering, 2015, 38: 105-112.

  [10] Jingyuan Li, Hongwei Zhao, Weidong Huang*.  Mechanism of proanthocyanidins-induced alcoholic fermentation enhancement in Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology. 2014, 41(12): 1793-1802.

  [11] Haigang Tan, Jian Dong, Guanglu Wang, Haiyan Xu, Cuiying Zhang, Dongguang Xiao. Enhanced freeze tolerance of baker’s yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough. Journal of Industrial Microbiology and Biotechnology, 2014, 41(8): 1275–1285.

  [12] Guo-Qing Huang, Yan-Ting Sun, Jun-Xia Xiao, Jian Yang. Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 2012, 135(2): 534–539.

  [13] Chenyong, Huangmingzhi, Wangzejian, Chuju*. Controlling the feed rate of glucose and propanol for the enhancement of erythromycin production and exploration of propanol metabolism fate by quantitative metabolic flux analysis. Bioprocess and Biosystems Engineering. 2013, 36: 1445-1453.

  [14] Chenyong, Wangzejian, Chuju*. Significant decrease of broth viscosity and glucose consumption in erythromycin fermentation by dynamic regulation of ammonium sulfate and phosphate. Bioresource Technology. 2013, 134: 173-179.